3.5.92 \(\int \frac {x^2}{(a+b x^3)^2 (c+d x^3)^{3/2}} \, dx\) [492]

Optimal. Leaf size=108 \[ -\frac {d}{(b c-a d)^2 \sqrt {c+d x^3}}-\frac {1}{3 (b c-a d) \left (a+b x^3\right ) \sqrt {c+d x^3}}+\frac {\sqrt {b} d \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{(b c-a d)^{5/2}} \]

[Out]

d*arctanh(b^(1/2)*(d*x^3+c)^(1/2)/(-a*d+b*c)^(1/2))*b^(1/2)/(-a*d+b*c)^(5/2)-d/(-a*d+b*c)^2/(d*x^3+c)^(1/2)-1/
3/(-a*d+b*c)/(b*x^3+a)/(d*x^3+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {455, 44, 53, 65, 214} \begin {gather*} -\frac {d}{\sqrt {c+d x^3} (b c-a d)^2}-\frac {1}{3 \left (a+b x^3\right ) \sqrt {c+d x^3} (b c-a d)}+\frac {\sqrt {b} d \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{(b c-a d)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/((a + b*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

-(d/((b*c - a*d)^2*Sqrt[c + d*x^3])) - 1/(3*(b*c - a*d)*(a + b*x^3)*Sqrt[c + d*x^3]) + (Sqrt[b]*d*ArcTanh[(Sqr
t[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(b*c - a*d)^(5/2)

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 455

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{\left (a+b x^3\right )^2 \left (c+d x^3\right )^{3/2}} \, dx &=\frac {1}{3} \text {Subst}\left (\int \frac {1}{(a+b x)^2 (c+d x)^{3/2}} \, dx,x,x^3\right )\\ &=-\frac {1}{3 (b c-a d) \left (a+b x^3\right ) \sqrt {c+d x^3}}-\frac {d \text {Subst}\left (\int \frac {1}{(a+b x) (c+d x)^{3/2}} \, dx,x,x^3\right )}{2 (b c-a d)}\\ &=-\frac {d}{(b c-a d)^2 \sqrt {c+d x^3}}-\frac {1}{3 (b c-a d) \left (a+b x^3\right ) \sqrt {c+d x^3}}-\frac {(b d) \text {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^3\right )}{2 (b c-a d)^2}\\ &=-\frac {d}{(b c-a d)^2 \sqrt {c+d x^3}}-\frac {1}{3 (b c-a d) \left (a+b x^3\right ) \sqrt {c+d x^3}}-\frac {b \text {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{(b c-a d)^2}\\ &=-\frac {d}{(b c-a d)^2 \sqrt {c+d x^3}}-\frac {1}{3 (b c-a d) \left (a+b x^3\right ) \sqrt {c+d x^3}}+\frac {\sqrt {b} d \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{(b c-a d)^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.26, size = 101, normalized size = 0.94 \begin {gather*} \frac {-2 a d-b \left (c+3 d x^3\right )}{3 (b c-a d)^2 \left (a+b x^3\right ) \sqrt {c+d x^3}}-\frac {\sqrt {b} d \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {-b c+a d}}\right )}{(-b c+a d)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/((a + b*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

(-2*a*d - b*(c + 3*d*x^3))/(3*(b*c - a*d)^2*(a + b*x^3)*Sqrt[c + d*x^3]) - (Sqrt[b]*d*ArcTan[(Sqrt[b]*Sqrt[c +
 d*x^3])/Sqrt[-(b*c) + a*d]])/(-(b*c) + a*d)^(5/2)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.33, size = 485, normalized size = 4.49

method result size
default \(-\frac {b \sqrt {d \,x^{3}+c}}{3 \left (a d -b c \right )^{2} \left (b \,x^{3}+a \right )}-\frac {2 d}{3 \left (a d -b c \right )^{2} \sqrt {\left (x^{3}+\frac {c}{d}\right ) d}}+\frac {i b \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {b \left (2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d \right )}{2 d \left (a d -b c \right )}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \left (a d -b c \right )^{3} \sqrt {d \,x^{3}+c}}\right )}{2 d}\) \(485\)
elliptic \(-\frac {b \sqrt {d \,x^{3}+c}}{3 \left (a d -b c \right )^{2} \left (b \,x^{3}+a \right )}-\frac {2 d}{3 \left (a d -b c \right )^{2} \sqrt {\left (x^{3}+\frac {c}{d}\right ) d}}+\frac {i b \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {b \left (2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d \right )}{2 d \left (a d -b c \right )}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \left (a d -b c \right )^{3} \sqrt {d \,x^{3}+c}}\right )}{2 d}\) \(485\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(b*x^3+a)^2/(d*x^3+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*b/(a*d-b*c)^2*(d*x^3+c)^(1/2)/(b*x^3+a)-2/3*d/(a*d-b*c)^2/((x^3+c/d)*d)^(1/2)+1/2*I*b/d*2^(1/2)*sum(1/(a*
d-b*c)^3*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d
*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*
d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)
*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*
d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),1/2*b/d*(2*I*(-c*d^2)^(1/3)*3^(1/2)
*_alpha^2*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-c*d^2)^(2/3)*_alpha-3*c*d)/(a*d-b*c),(I*3^(1/2)/
d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)^2/(d*x^3+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 219 vs. \(2 (92) = 184\).
time = 3.13, size = 450, normalized size = 4.17 \begin {gather*} \left [\frac {3 \, {\left (b d^{2} x^{6} + {\left (b c d + a d^{2}\right )} x^{3} + a c d\right )} \sqrt {\frac {b}{b c - a d}} \log \left (\frac {b d x^{3} + 2 \, b c - a d + 2 \, \sqrt {d x^{3} + c} {\left (b c - a d\right )} \sqrt {\frac {b}{b c - a d}}}{b x^{3} + a}\right ) - 2 \, {\left (3 \, b d x^{3} + b c + 2 \, a d\right )} \sqrt {d x^{3} + c}}{6 \, {\left ({\left (b^{3} c^{2} d - 2 \, a b^{2} c d^{2} + a^{2} b d^{3}\right )} x^{6} + a b^{2} c^{3} - 2 \, a^{2} b c^{2} d + a^{3} c d^{2} + {\left (b^{3} c^{3} - a b^{2} c^{2} d - a^{2} b c d^{2} + a^{3} d^{3}\right )} x^{3}\right )}}, \frac {3 \, {\left (b d^{2} x^{6} + {\left (b c d + a d^{2}\right )} x^{3} + a c d\right )} \sqrt {-\frac {b}{b c - a d}} \arctan \left (-\frac {\sqrt {d x^{3} + c} {\left (b c - a d\right )} \sqrt {-\frac {b}{b c - a d}}}{b d x^{3} + b c}\right ) - {\left (3 \, b d x^{3} + b c + 2 \, a d\right )} \sqrt {d x^{3} + c}}{3 \, {\left ({\left (b^{3} c^{2} d - 2 \, a b^{2} c d^{2} + a^{2} b d^{3}\right )} x^{6} + a b^{2} c^{3} - 2 \, a^{2} b c^{2} d + a^{3} c d^{2} + {\left (b^{3} c^{3} - a b^{2} c^{2} d - a^{2} b c d^{2} + a^{3} d^{3}\right )} x^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)^2/(d*x^3+c)^(3/2),x, algorithm="fricas")

[Out]

[1/6*(3*(b*d^2*x^6 + (b*c*d + a*d^2)*x^3 + a*c*d)*sqrt(b/(b*c - a*d))*log((b*d*x^3 + 2*b*c - a*d + 2*sqrt(d*x^
3 + c)*(b*c - a*d)*sqrt(b/(b*c - a*d)))/(b*x^3 + a)) - 2*(3*b*d*x^3 + b*c + 2*a*d)*sqrt(d*x^3 + c))/((b^3*c^2*
d - 2*a*b^2*c*d^2 + a^2*b*d^3)*x^6 + a*b^2*c^3 - 2*a^2*b*c^2*d + a^3*c*d^2 + (b^3*c^3 - a*b^2*c^2*d - a^2*b*c*
d^2 + a^3*d^3)*x^3), 1/3*(3*(b*d^2*x^6 + (b*c*d + a*d^2)*x^3 + a*c*d)*sqrt(-b/(b*c - a*d))*arctan(-sqrt(d*x^3
+ c)*(b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^3 + b*c)) - (3*b*d*x^3 + b*c + 2*a*d)*sqrt(d*x^3 + c))/((b^3*c^2*
d - 2*a*b^2*c*d^2 + a^2*b*d^3)*x^6 + a*b^2*c^3 - 2*a^2*b*c^2*d + a^3*c*d^2 + (b^3*c^3 - a*b^2*c^2*d - a^2*b*c*
d^2 + a^3*d^3)*x^3)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2}}{\left (a + b x^{3}\right )^{2} \left (c + d x^{3}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(b*x**3+a)**2/(d*x**3+c)**(3/2),x)

[Out]

Integral(x**2/((a + b*x**3)**2*(c + d*x**3)**(3/2)), x)

________________________________________________________________________________________

Giac [A]
time = 1.44, size = 153, normalized size = 1.42 \begin {gather*} -\frac {b d \arctan \left (\frac {\sqrt {d x^{3} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt {-b^{2} c + a b d}} - \frac {3 \, {\left (d x^{3} + c\right )} b d - 2 \, b c d + 2 \, a d^{2}}{3 \, {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} {\left ({\left (d x^{3} + c\right )}^{\frac {3}{2}} b - \sqrt {d x^{3} + c} b c + \sqrt {d x^{3} + c} a d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)^2/(d*x^3+c)^(3/2),x, algorithm="giac")

[Out]

-b*d*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(-b^2*c + a*b*d)) - 1
/3*(3*(d*x^3 + c)*b*d - 2*b*c*d + 2*a*d^2)/((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*((d*x^3 + c)^(3/2)*b - sqrt(d*x^3
+ c)*b*c + sqrt(d*x^3 + c)*a*d))

________________________________________________________________________________________

Mupad [B]
time = 7.43, size = 199, normalized size = 1.84 \begin {gather*} -\frac {\left (\frac {3\,b\,d\,\left (a\,d+b\,c\right )-b\,d\,\left (a\,d+2\,b\,c\right )}{3\,\left (a^2\,b\,d^3-2\,a\,b^2\,c\,d^2+b^3\,c^2\,d\right )}+\frac {b^2\,d^2\,x^3}{a^2\,b\,d^3-2\,a\,b^2\,c\,d^2+b^3\,c^2\,d}\right )\,\sqrt {d\,x^3+c}}{b\,d\,x^6+\left (a\,d+b\,c\right )\,x^3+a\,c}+\frac {\sqrt {b}\,d\,\ln \left (\frac {a\,d-2\,b\,c-b\,d\,x^3+\sqrt {b}\,\sqrt {d\,x^3+c}\,\sqrt {a\,d-b\,c}\,2{}\mathrm {i}}{b\,x^3+a}\right )\,1{}\mathrm {i}}{2\,{\left (a\,d-b\,c\right )}^{5/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((a + b*x^3)^2*(c + d*x^3)^(3/2)),x)

[Out]

(b^(1/2)*d*log((a*d - 2*b*c + b^(1/2)*(c + d*x^3)^(1/2)*(a*d - b*c)^(1/2)*2i - b*d*x^3)/(a + b*x^3))*1i)/(2*(a
*d - b*c)^(5/2)) - (((3*b*d*(a*d + b*c) - b*d*(a*d + 2*b*c))/(3*(a^2*b*d^3 + b^3*c^2*d - 2*a*b^2*c*d^2)) + (b^
2*d^2*x^3)/(a^2*b*d^3 + b^3*c^2*d - 2*a*b^2*c*d^2))*(c + d*x^3)^(1/2))/(a*c + x^3*(a*d + b*c) + b*d*x^6)

________________________________________________________________________________________